Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation

نویسندگان

  • Ajeet Pratap Singh
  • Trevor K. Archer
چکیده

The regulatory networks of differentiation programs and the molecular mechanisms of lineage-specific gene regulation in mammalian embryos remain only partially defined. We document differential expression and temporal switching of BRG1-associated factor (BAF) subunits, core pluripotency factors and cardiac-specific genes during post-implantation development and subsequent early organogenesis. Using affinity purification of BRG1 ATPase coupled to mass spectrometry, we characterized the cardiac-enriched remodeling complexes present in E8.5 mouse embryos. The relative abundance and combinatorial assembly of the BAF subunits provides functional specificity to Switch/Sucrose NonFermentable (SWI/SNF) complexes resulting in a unique gene expression profile in the developing heart. Remarkably, the specific depletion of the BAF250a subunit demonstrated differential effects on cardiac-specific gene expression and resulted in arrhythmic contracting cardiomyocytes in vitro. Indeed, the BAF250a physically interacts and functionally cooperates with Nucleosome Remodeling and Histone Deacetylase (NURD) complex subunits to repressively regulate chromatin structure of the cardiac genes by switching open and poised chromatin marks associated with active and repressed gene expression. Finally, BAF250a expression modulates BRG1 occupancy at the loci of cardiac genes regulatory regions in P19 cell differentiation. These findings reveal specialized and novel cardiac-enriched SWI/SNF chromatin-remodeling complexes, which are required for heart formation and critical for cardiac gene expression regulation at the early stages of heart development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G1/S Inhibitors and the SWI/SNF Complex Control Cell-Cycle Exit during Muscle Differentiation

The transition from proliferating precursor cells to post-mitotic differentiated cells is crucial for development, tissue homeostasis, and tumor suppression. To study cell-cycle exit during differentiation in vivo, we developed a conditional knockout and lineage-tracing system for Caenorhabditis elegans. Combined lineage-specific gene inactivation and genetic screening revealed extensive redund...

متن کامل

Evidence that Swi/Snf directly represses transcription in S. cerevisiae.

Many studies have established that the Swi/Snf family of chromatin-remodeling complexes activate transcription. Recent reports have suggested the possibility that these complexes can also repress transcription. We now present chromatin immunoprecipitation evidence that the Swi/Snf complex of Saccharomyces cerevisiae directly represses transcription of the SER3 gene. Consistent with its role in ...

متن کامل

Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis.

Although the two catalytic subunits of the SWI/SNF chromatin-remodeling complex--Brahma (Brm) and Brg1--are almost invariably co-expressed, their mutually exclusive incorporation into distinct SWI/SNF complexes predicts that Brg1- and Brm-based SWI/SNF complexes execute specific functions. Here, we show that Brg1 and Brm have distinct functions at discrete stages of muscle differentiation. Whil...

متن کامل

Chromatin remodeling by the SWI/SNF-like BAF complex and STAT4 activation synergistically induce IL-12Rbeta2 expression during human Th1 cell differentiation.

Interleukin-12 (IL-12) is a key cytokine for the development of T helper type 1 (Th1) responses; however, naïve CD4(+) T cells do not express IL-12Rbeta2, and are therefore unresponsive to IL-12. We have examined the mechanisms that control Th1-specific expression of the human IL-12Rbeta2 gene at early time points after T-cell stimulation. We have identified a Th1-specific enhancer element that...

متن کامل

Role of an mSin3A-Swi/Snf chromatin remodeling complex in the feedback repression of bile acid biosynthesis by SHP.

The orphan receptor SHP interacts with many nuclear receptors and inhibits their transcriptional activities. SHP is central to feedback repression of cholesterol 7alpha hydroxylase gene (CYP7A1) expression by bile acids, which is critical for maintaining cholesterol homeostasis. Using CYP7A1 as a model system, we studied the molecular mechanisms of SHP repression at the level of native chromati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014